数据库-大致分类

首先说一下数据库的分类。统一的分类应该是关系型数据库和非关系型数据库。关系型数据库主要有Oracle和MySQL,非关系型数据库比较多,下面来详细说明。

关系型数据库和非关系型数据库

关系型数据库(SQL)

关系型数据库模型是把复杂的数据结构归简单的二元关系(即二维表格形式)。在关系型数据库中,对数据的操作几乎全部建立在一个或多个关系表格上,通过对这些关联的表格分类、合并、连接或选取等运算来实现数据库的管理。

SQL_example.png

非关系型数据库(NoSQL)

NoSQL,泛指非关系型的数据库。随着互联网web2.0网站的兴起,传统的关系数据库在应付web2.0网站,特别是超大规模和高并发的SNS类型的web2.0纯动态网站已经显得力不从心,暴露了很多难以克服的问题,而非关系型的数据库则由于其本身的特点得到了非常迅速的发展。NoSql数据库在特定的场景下可以发挥出难以想象的高效率和高性能,它是作为对传统关系型数据库的一个有效的补充。

两者的比较

SQL的优点及缺陷

两者的比较

  1. 存储方式 关系型数据库是表格式的,因此存储在表的行和列中。他们之间很容易关联协作存储,提取数据很方便。而 Nosql 数据库则与其相反,他是大块的组合在一起。通常存储在数据集中,就像文档、键值对或者图结构。

  2. 存储结构 关系型数据库对应的是结构化数据,数据表都预先定义了结构(列的定义),结构描述了数据的形式和内容。这一点对数据建模至关重要,虽然预定义结构带来了可靠性和稳定性,但是修改这些数据比较困难。而Nosql 数据库基于动态结构,使用与非结构化数据。因为 Nosql 数据库是动态结构,可以很容易适应数据类型和结构的变化。

  3. 存储规范 关系型数据库的数据存储为了更高的规范性,把数据分割为最小的关系表以避免重复,获得精简的空间利用。虽然管理起来很清晰,但是单个操作设计到多张表的时候,数据管理就显得有点麻烦。而 Nosql 数据存储在平面数据集中,数据经常可能会重复。单个数据库很少被分隔开,而是存储成了一个整体,这样整块数据更加便于读写

  4. 存储扩展 这可能是两者之间最大的区别,关系型数据库是纵向扩展,也就是说想要提高处理能力,要使用速度更快的计算机。因为数据存储在关系表中,操作的性能瓶颈可能涉及到多个表,需要通过提升计算机性能来克服。虽然有很大的扩展空间,但是最终会达到纵向扩展的上限。而 Nosql 数据库是横向扩展的,它的存储天然就是分布式的,可以通过给资源池添加更多的普通数据库服务器来分担负载。

  5. 查询方式 关系型数据库通过结构化查询语言来操作数据库(就是我们通常说的SQL)。SQL 支持数据库 CURD 操作的功能非常强大,是业界的标准用法。而 Nosql 查询以块为单元操作数据,使用的是非结构化查询语言(UnQl),它是没有标准的。关系型数据库表中主键的概念对应 Nosql 中存储文档的 ID。关系型数据库使用预定义优化方式(比如索引)来加快查询操作,而 Nosql 更简单更精确的数据访问模式。

  6. 事务 关系型数据库遵循 ACID 规则(原子性( Atomicity )、一致性( Consistency )、隔离性( Isolation )、持久性( Durability )),而 Nosql数据库遵循 BASE 原则(基本可用(Basically Availble)、软/柔性事务(Soft-state )、最终一致性(Eventual Consistency))。由于关系型数据库的数据强一致性,所以对事务的支持很好。关系型数据库支持对事务原子性细粒度控制,并且易于回滚事务。而 Nosql 数据库是在 CAP(一致性、可用性、分区容忍度)中任选两项,因为基于节点的分布式系统中,很难全部满足,所以对事务的支持不是很好,虽然也可以使用事务,但是并不是 Nosql 的闪光点。

  7. 性能 关系型数据库为了维护数据的一致性付出了巨大的代价,读写性能比较差。在面对高并发读写性能非常差,面对海量数据的时候效率非常低。而Nosql 存储的格式都是 key-value 类型的,并且存储在内存中,非常容易存储,而且对于数据的 一致性是 弱要求。Nosql 无需 sql 的解析,提高了读写性能。

  8. 授权方式 关系型数据库通常有 SQL Server,Mysql,Oracle。主流的 Nosql 数据库有redis,memcache,MongoDb。大多数的关系型数据库都是付费的并且价格昂贵,成本较大,而 Nosql 数据库通常都是开源的。

非关系型数据库种类

用于指代那些非关系型的,分布式的,且一般不保证遵循ACID原则的数据存储系统。 以键值对存储,且结构不固定,每一个元组可以有不一样的字段,每个元组可以根据需要增加一些自己的键值对,这样就不会局限于固定的结构,可以减少一些时间和空间的开销。使用这种方式,用户可以根据需要去添加自己需要的字段,这样,为了获取用户的不同信息,不需要像关系型数据库中,要对多表进行关联查询。仅需要根据id取出相应的value就可以完成查询。但非关系型数据库由于很少的约束,他也不能够提供像SQL所提供的where这种对于字段属性值情况的查询。并且难以体现设计的完整性。他只适合存储一些较为简单的数据,对于需要进行较复杂查询的数据,关系型数据库显的更为合适。

键值存储数据库(key-value)

好比传统语言用的hashtable,可以用key来添加、查询或者删除数据,因为使用key主键进行访问,所以会有很高的性能和扩展性。

键值数据库主要使用一个哈希表,这个表中有一个特定的键和一个指针指向特定的数据。Key/value模型对于IT系统来说的优势在于简单、易部署、高并发

典型产品:Memcached、Redis、MemcacheDB

列存储数据库

列存储数据库将数据存储在列族中,一个列族存储经常被一起查询的相关数据,比如人类,我们经常会查询某个人的姓名和年龄,而不是薪资。这种情况下姓名和年龄会被放到一个列族中,薪资会被放到另一个列族中。

这种数据库通常用来应对分布式存储海量数据。

典型产品:Cassandra、HBase

文档型数据库

文档型数据库的灵感是来自于Lotus Notes办公软件,而且它同第一种键值数据库类似。该类型的数据模型是版本化的文档,半结构化的文档以特定的格式存储,比如JSON。文档型数据库可以看作是键值数据库的升级版,允许之间嵌套键值。而且文档型数据库比键值数据库的查询效率更高

面向文档数据库会将数据以文档形式存储(说白了就是string)。每个文档都是自包含的数据单元,是一系列数据项的集合。每个数据项都有一个名词与对应值,值既可以是简单的数据类型,如字符串、数字和日期等;也可以是复杂的类型,如有序列表和关联对象。数据存储的最小单位是文档,同一个表中存储的文档属性可以是不同的,数据可以使用XML、JSON或BSON等多种形式存储。

典型产品:MongoDB、CouchDB

图数据库

图形数据库允许我们将数据以图的方式存储。实体会被作为顶点,而实体之间的关系则会被作为边。比如我们有三个实体,Steve Jobs、Apple和Next,则会有两个“Founded by”的边将Apple和Next连接到Steve Jobs。 典型产品:Neo4J、InforGrid

用谁好?

电商服务类企业级应用里,能否用Mongodb直接替换掉mysql?

reference

  1. 超全的数据库分类介绍
  2. 简析关系型数据库和非关系型数据库的比较(上)
  3. 简析关系型数据库和非关系型数据库的比较(下)
Table of Contents